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Abstract—Radio Frequency Fingerprinting (RFF) techniques
promise to authenticate wireless devices at the physical layer
based on inherent hardware imperfections introduced during
manufacturing. Such RF transmitter imperfections are reflected
into over-the-air signals, allowing receivers to accurately iden-
tify the RF transmitting source. Recent advances in Machine
Learning, particularly in Deep Learning (DL), have improved
the ability of RFF systems to extract and learn complex features
that make up the device-specific fingerprint. However, integrating
DL techniques with RFF and operating the system in real-world
scenarios presents numerous challenges, originating from the
embedded systems and the DL research domains. This paper
systematically identifies and analyzes the essential considerations
and challenges encountered in the creation of DL-based RFF
systems across their typical development life-cycle, which include
(i) data collection and preprocessing, (ii) training, and finally,
(iii) deployment. Our investigation provides a comprehensive
overview of the current open problems that prevent real deploy-
ment of DL-based RFF systems while also discussing promising
research opportunities to enhance the overall accuracy, robust-
ness, and privacy of these systems.

Index Terms—Physical Layer Security, Specific Emitter Iden-
tification, Deep Learning, Internet of Things, Wireless Security.

I. INTRODUCTION

Radio Frequency Fingerprinting (RFF) techniques have re-
cently gained attention in the scientific community as a way to
authenticate Radio Frequency (RF) devices based on samples
of their Physical (PHY) layer signals [1]. RFF grounds on the
assumption that two RF devices are unlikely to transmit signals
with the same PHY layer features, even when they convey the
same data. Therefore, a rogue transmitter that tries to mimic
a legitimate Internet of Things (IoT) device by replaying its
messages would inevitably leave its own fingerprint, distinct at
the PHY layer from that of the legitimate device. This unique
property can serve as either an alternative or a direct comple-
ment to existing cryptography-based authentication protocols.
In particular, being orthogonal to cryptographic protocols and
requiring no modifications to the transmitter’s hardware or
software, RFF is well-suited for situations where updates are
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Fig. 1. RFF building blocks: The receiver identifies the transmitting source
by analyzing the received signal at the PHY layer.

difficult (e.g., satellite networks) or devices are characterized
by strict hardware constraints (e.g., IoT) [2].

The identification and extraction of PHY layer features
required for RFF involve integrating advanced data mining
techniques as part of the system. Specifically, the use of Deep
Learning (DL) techniques in RFF systems has shown signifi-
cant potential to improve performance, due to the remarkable
ability of DL models to identify complex patterns and extract
relevant features from raw data [3]. The effectiveness of DL-
based RFF systems in accurately identifying RF devices has
been reported in the literature, but these outstanding results
were obtained primarily under controlled laboratory condi-
tions. At the time of this writing, RFF deployment remains
challenging in real-world applications.

Factors such as the calibration and configuration of the
DL methods, especially within the context of RFF systems,
the unpredictability of the radio channel, and the deployment
conditions contribute to the difficulties of adapting DL solu-
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Fig. 2. Typical workflow of DL-based RFF.

tions for RFF systems. Challenges associated with DL-based
RFF systems are discussed in several recent studies [4]–[8];
however, such considerations are disconnected from the real-
world deployment of such systems.

Thus, we currently miss a systematic classification of the
main challenges that prevent the adoption of DL-based RFF
systems on a large scale in real-world scenarios.

Contribution. In this paper, we systematically identify and
classify the building blocks necessary for assembling DL-
based RFF systems, as well as the challenges that currently
prevent their real-world deployment.

We do so with reference to the standard development
pipeline of DL-based RFF systems, which includes: RF Data
Collection and Preprocessing, Training, and Deployment.

For all identified challenges and each phase, we provide
explanations and examples grounded in the literature. Address-
ing such challenges can be a springboard for DL-based RFF
deployment in real-world scenarios and further future research.
Essentially, we bridge the gap between research and practice
towards DL-based RFF deployment.

Our contribution is not yet another survey on RFF. This
paper addresses researchers in Industry and Academia ap-
proaching the RFF domain, providing a tutorial-style discus-
sion of the aspects connected to both the DL and the embedded
systems areas and their intersection.

The remainder of this paper is organized as follows. Sec-
tion II introduces DL-based RFF systems. Section III high-
lights key considerations required for both the stage of data
collection and preprocessing as well as the training, and
Section IV discusses deployment challenges. We highlight
future research opportunities in Section V, before we conclude
in Section VI.

II. PRELIMINARIES ON DL-BASED RFF

RFF techniques identify wireless devices based on their
unique signal characteristics. As shown in Fig. 1, RF devices
emit unique waveforms in the radio spectrum due to manu-

facturing imperfections in various components, e.g., digital-
to-analog converters, mixers, power amplifiers, antennas, etc.
Once captured by a receiver, these signals can be represented
in various formats and then processed by a DL model to iden-
tify and extract subtle variations per device. These impercep-
tible variations inherent to each signal constitute the signature
of the device and serve as the foundation for authentication.
The process of designing and implementing DL-based RFF
systems typically involves three essential phases, known as
the DL pipeline: (i) data collection and pre-processing, (ii)
training, and finally (iii) deployment (see Fig. 2).

Data collection and Pre-processing. RF signals emitted by
wireless devices within a monitored environment are captured
and stored as In-phase (I) and Quadrature (Q) samples. This
format preserves information about the amplitude and phase
distortions. After acquisition, the acquired data are prepared
for model training through a series of preprocessing tech-
niques, including, e.g., feature selection, data augmentation,
normalization, and noise removal. In the context of the RFF
building pipeline, data preprocessing is particularly critical
given that data are collected from the wireless channel, where
RF signals might experience significant unpredictable and
time-varying distortion due to phenomena such as multipath
propagation, interference, shadowing, and fading.

Training. This phase involves designing and training a
DL architecture capable of effectively capturing the under-
lying patterns corresponding to the unique RF fingerprints
of wireless devices. Factors such as architecture selection,
hyper-parameter tuning, processing variable input lengths, and
designing proper validation and testing metrics are crucial for
building robust and accurate RFF systems. Throughout this
phase, the model undergoes iterative fine-tuning and rigorous
evaluation to ensure accuracy, generalization, and adaptability.

Deployment. The trained model is integrated into a pro-
duction system to perform the authentication of wireless de-
vices. In this context, authentication is achieved by comparing
incoming RF fingerprints with those learned during training.



The RFF system should efficiently and reliably authenticate
wireless devices under various environmental conditions and
deployment scenarios. However, various issues, such as system
scalability, adaptability to new conditions, and robustness to
adversarial attacks, affect the system’s performance.

III. DATA COLLECTION, PRE-PROCESSING, AND
TRAINING

Training Dataset Collection Settings. Existing techniques
to collect RF fingerprints typically involve generating short,
intermittent snapshots of device wireless data over several
days [7], [9]. The aim is to capture the RF fingerprint across
varying wireless channel conditions and ensure a manageable
dataset size for efficient training. However, these techniques
often overlook additional factors that could impact the de-
vices’ actual RF fingerprint, including effects from power
cycles, temperature variations in internal circuits, and device
aging [10]. In real-world scenarios, RF devices operate con-
tinuously, posing a challenge in developing data collection
methods that can effectively capture the dynamic nature of
the device fingerprint.

Input Data Selection. Each segment of the transmitted
wireless signal possesses unique characteristics, potentially
useful for RFF. However, selecting the optimal data segment as
input to the RFF model can be challenging. Ideally, the chosen
data segment should show a consistent and repetitive pattern.
In fact, this can guarantee that the DL model learns from the
unique patterns of the RF signal rather than becoming biased
towards the specific content of the wireless segment. The
preamble of the wireless packet, containing synchronization-
related information, is particularly appealing as it is consistent
nature across different devices and packets (for the same
communication technology). Overall, selecting the optimal
wireless signal segment for RFF is still an open challenge
that requires further research and investigation.

Data Augmentation. Refers to a set of established trans-
formations applied to the original data to diversify it while
preserving its statistical properties. The main objective is to
increase the size of the data set and improve the generalization
and robustness of the model. For example, in computer vision,
augmentation techniques such as flipping, rotation, scaling,
and cropping are used successfully to expand the data and
mitigate overfitting. However, in the context of RFF, identify-
ing universally effective techniques to enhance wireless data
remains challenging.

This issue arises due to the complexity and dynamic nature
of wireless signals, which are subject to channel conditions
and hardware-based effects.

Signal Representation. Wireless signals can be represented
in various forms using different signal processing methods,
each capturing different characteristics of the signal. The
features extracted from these analyses significantly impact the
performance of the DL model. Representations such as raw
IQ data, spectral characteristics, and the combination of time-
and frequency-related metrics are often considered [4]. Raw
IQ data capture amplitude and phase variations caused by

hardware imperfections. Spectral analysis extracts frequency-
domain characteristics of the RF signal. Furthermore, the time-
frequency representations capture the combined time-varying
frequency behavior of the RF signal. Since each representation
has its own strengths and weaknesses, selecting the most
suitable one for training RFF models is not straightforward
and requires further research.

Feature Normalization. Wireless data is inherently dy-
namic and subject to time-varying channel conditions, hard-
ware imperfections, and noise, all of which can introduce
power fluctuations and scaling issues in the received data.
Given that DL models are scale-sensitive, these inconsis-
tencies, if not addressed, can negatively affect the models’
learning and generalization. For example, when training with
raw IQ data, significant scale differences between the I and
Q components may lead the model to assign greater weight
to the component with a larger scale, resulting in a scale-
dependent solution for device identification. By equalizing all
wireless data feature ranges (normalization), DL models can
correctly capture the underlying pattern of the data distribution
and reduce potential biases towards signal power or feature
scale.

Neural Network Structure & Hyper-parameter Tuning.
The DL architecture is crucial for the overall accuracy and
robustness of RFF systems. Many available solutions reuse or
modify existing DL networks, reporting outstanding perfor-
mance in other domains, such as computer vision and Natural
Language Processing (NLP) [4]. However, these models, ini-
tially designed to capture domain-specific features, cannot be
expected to perform well with wireless data. Therefore, it
becomes imperative to develop specialized DL models to deal
with the complexity of wireless data and adapt to its inherently
dynamic nature. Fig. 3a compares neural network architectures
trained on preamble raw IQ data with a defined sequence.
To assess model robustness against temporal changes, the
sequence of the preamble data is randomized during testing.
While all models achieved high training accuracy, only the
Transformer architecture (without positional encoder) demon-
strated strong generalization on both training and testing data,
regardless of the raw IQ data sequence. Furthermore, the
configuration of DL models with different hyper-parameter
values can affect their performance during training and de-
ployment. Suboptimal hyper-parameter selection might cause
overfitting or underfitting, resulting in degraded performance.
For example, analyzing the impact of batch size and epochs,
Fig. 3b illustrates how varying the batch size affects the
model learning. Smaller batch sizes achieve higher accuracy
and converge faster but are more computationally demanding,
whereas larger batches converge more slowly but demonstrate
steady progress over more epochs.

Design of a Proper Validation/Testing Methodology.
While conventional validation techniques like Holdout or K-
fold cross-validation can be utilized to evaluate DL mod-
els with wireless data, the dynamic nature of wireless data
requires special considerations. Wireless channels frequently
experience time-varying conditions, e.g., fading, multipath
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Fig. 3. Impact of DL architecture and hyper-parameter tuning on model performance based on the analysis of the dataset released in [5]. (a) Comparison of
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Fig. 4. Visualization of feature embedding for a reference DL-based RFF model trained to identify 143 transmitters, based on our own analysis of the
dataset released in [5]. (a) Cosine similarity analysis highlights the degree of similarity among features. (b) Projection using Principal Component Analysis
(PCA) shows the distribution variation and clustering of similar transmitters. (c) t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the
transmitters’ features, providing a dimensionality-reduced view of the crowded feature space and its overlapping regions. The colors in (b) and (c) represent
individual transmitters.

propagation, and Doppler effects. These elements change the
data distribution over time, making it difficult to guarantee
that the validation and testing sets are representative of future
data [9]. Moreover, spatial variability introduces another level
of complexity, as specific physical environments can greatly
influence wireless data. Consequently, it is imperative to
validate and test the model on diverse data captured from
different locations and periods, as this will provide an accurate
assessment of its performance under real-world conditions.

IV. DEPLOYMENT CHALLENGES

Model Interpretability Issues. Although DL techniques of-
ten show remarkable performance compared to other Machine
Learning techniques, their blackbox nature and lack of inter-
pretability are significant drawbacks. In particular, it is difficult
to explain how these models classify the data and which
specific underlying features contribute to the final decision
produced by the model. This issue becomes even more relevant
when considering that DL-based RFF systems are deployed for
security applications, such as device authentication and intru-
sion detection. Given the security implications, a transparent

understanding of the rationale of the decision-making process
of these models is even more critical to mitigate the risk of
false predictions while maintaining robustness and reliability.

Lack of Benchmark Dataset. Standardized benchmark
datasets for computer vision and NLP provide a common
ground for comparing the performance of DL models in
those domains. On the contrary, for RFF, developing a widely
accepted benchmark dataset remains a challenge. To overcome
this, researchers often resort to locally generated datasets for
model validation. Although such datasets could be practical
for initial model testing, they may only represent a subset of
real deployment conditions.

This bias may affect the robustness and generalizability of
the model when deployed in real-world scenarios. In general,
creating a comprehensive and standardized RFF benchmark
dataset is crucial to evaluate deployed DL-based RFF models
across various modulation schemes, transmission rates, com-
munication technologies, and channel conditions.

Receiver Hardware Bias. Most existing RFF solutions
collect data using a single receiver to identify a specific
wireless transmitter within a pool of devices. Using this



technique, it is commonly assumed that the receiver hardware
does not introduce its own variability to the captured RF
fingerprint. Additionally, the receiver hardware used during
training is typically expected to remain unchanged during
deployment. In reality, the RF fingerprint is affected by the
entire communication chain, including the transmitter, the
channel, and finally, the receiver [9], [11]. Therefore, the
resulting trained model is significantly biased towards the
physical characteristics of the receiver used during training.
With this limitation, any change at the receiver—where the
model has been deployed—would require retraining the model.
This is paramount for any generalized deployment, with a
trained model for one transmitting device, V , distributed to
many (or any) devices that seek to identify/authenticate V .

Scalability Issues. DL-based RFF systems are designed to
be deployed in large-scale network environments with numer-
ous devices. However, as the number of devices increases, the
performance of the DL-based RFF might degrade [5]. This
degradation is mainly due to the difficulty in distinguishing
devices with similar characteristics. For instance, in a network
employing BPSK modulation, using raw IQ data for device
authentication could introduce scalability issues. Specifically,
the presence of limited features (strong I and nearly negligible
Q) combined with a densely populated feature space can
lead to overlapping features from similar devices, resulting
in performance degradation. Fig. 4 presents a visualization
of the feature embedding and cosine similarity for a model
designed to identify 143 wireless transmitters when analyzing
the dataset in [5]. As shown in Fig. 4a, cosine similarity reveals
areas of high similarity between the transmitter features. More-
over, Fig. 4b and 4c reveal a dense feature space and many
overlapping regions, indicating the potential challenge for
the model to distinguish transmitters. Overall, improving the
scalability of DL based RFF systems requires developing novel
solutions, which may involve improved feature engineering
and model architecture design.

Protocol Dependency. Current DL-based RFF systems
are inherently protocol-dependent and sensitive to protocol
configuration, which in turn affects their device identification
capabilities [8]. For example, WiFi and LoRa define a range of
parameters, including modulation schemes, bit rates, spreading
sequences (in the case of LoRa), allowed frequencies, band-
width, and transmit power, which can be fine-tuned based on
operational conditions. Changes in these parameters affect the
acquired RF fingerprint, leading to a decrease in overall system
performance. This performance drop is especially noticeable
when training and testing data are collected under different
protocol configurations.

Detection of Unauthorized Devices. Most existing DL-
based RFF systems operate under closed-set classification con-
ditions, i.e., they only recognize devices that were included in
their training set. While this approach works well in controlled
environments, it presents a significant challenge when new,
previously unseen devices transmit data. In such a scenario,
closed-set DL-based RFF systems cannot reliably recognize
new devices, primarily because they have not encountered

their unique RF fingerprints during the training phase. As
a result, the system compares the new unseen devices based
on the one(s) that closely match the RF fingerprint from its
training set. To overcome this challenge, it is crucial to develop
open-set classification techniques (e.g., zero-shot learning) that
can identify, handle, and reject new unauthorized devices
during the deployment phase, thus improving the security and
adaptability of the system.

Simultaneous Transmissions. During training, RF profiles
of transmitting devices are usually acquired by isolating a
specific transmitter device that operates on a single frequency
channel and collecting data with a receiver [12]. However, in
real-world RFF environments, multiple devices may transmit
simultaneously, either on the same frequency or across differ-
ent channels. Such concurrent transmissions can degrade the
performance of DL-based RFF systems due to signal overlap
at the receiver. Furthermore, any change in the training channel
profile can further affect performance, as the system may
encounter unfamiliar channel characteristics.

Deployment on Constrained Devices. Most current DL-
based RFF studies focus on developing RFF systems intended
to be deployed in computing environments with ample pro-
cessing power, memory, and energy. However, in many real-
world scenarios, deploying these computationally intensive
models on lightweight devices is often impractical. This is
particularly relevant for scenarios such as edge computing and
resource-constrained IoT devices. Therefore, more research
is required to explore optimization techniques that allow
RFF models to run efficiently on lightweight devices without
compromising performance.

Variable Input Length. Wireless signals can vary in
size and duration, depending on the specific communication
technology and modulation scheme [13]. This variability is
particularly evident in adaptive communication protocols such
as LoRaWAN, where the length of transmitted symbols varies
in response to network conditions and proximity. This is
challenging for conventional DL models, designed to handle
fixed-size input data. These models require the input data to
be truncated or padded to fit the input size, which can poten-
tially lead to information loss and increase the computational
resources to compensate for missing data. However, the most
critical implications lie in the negative impact on overall model
performance.

System Adaptiveness. Existing DL-based RFF systems
typically operate under the assumption that the set of au-
thorized devices present during the training phase remains
the same at the time of the deployment phase. However,
real-world wireless networks are often dynamic, and devices
frequently join and leave the network. The current solution to
this challenge involves retraining the system model whenever
there is a change in the network—a computationally expensive
and time-consuming process. This issue becomes particularly
critical in large critical infrastructures, where updates must be
executed seamlessly without disrupting regular operations.

Inference Time. In real-world settings, the time to per-
form the tests, namely the inference time, is a key factor



in determining the suitability of DL-based RFF systems to
achieve their objective. Short inference times are particularly
important in time-sensitive applications, where delays cannot
be tolerated. To ensure the practicality of DL-based RFF
systems, it is essential to evaluate and optimize the model
inference time across a range of devices that could potentially
be deployed within the specific network. This evaluation and
optimization is necessary, given that the inference time of DL
models varies based on the hardware components in which
they are installed.

Robustness to Channel Variations. DL-based RFF systems
rely on data collected from the physical layer of the wireless
spectrum. However, these data are subject to strong channel
fluctuations, noise, multipath, and shadowing effects caused
by environmental changes. These channel variations can sig-
nificantly affect the resulting profile of RF signals, making the
channel conditions experienced during training often different
from those experienced during the deployment phase. Eventu-
ally, this variability leads to performance degradation [9].

Jamming. Jamming attacks occur when a malicious entity
intentionally transmits a signal on the same frequency band
as the target communication link, disrupting ongoing com-
munication. In our context, jamming affects the reception of
the clean RF signal, making the extraction of RFF features
challenging. As mentioned above, this challenge is exacerbated
as the RF signal is already affected by other noise sources
present in the wireless channel. As a result, jamming attacks
can significantly compromise the reliability of the system.

Spoofing. The openness of wireless communications allows
malicious entities to eavesdrop on radio signals and inject
new signals to gain unauthorized access. In the RFF context,
an attacker can capture the unique RF fingerprint of a target
device, emulate or distort the signal to create a deceptive one,
and then transmit it to try to impersonate the legitimate device.
More research is needed to validate the possibility of this
adversarial scenario and test the resilience of DL-based RFF
systems against this attack.

Adversarial Attacks. DL models are vulnerable to ad-
versarial attacks [14]. For example, in image classification
tasks, malicious entities can trick the model by manipulating
the input imperceptibly to the human eye, but can fool the
model into making wrong predictions. In the context of RFF,
adversarial attacks can significantly impact the performance
and reliability of DL-based RFF systems. By exploiting the
sensitivity of the model to input perturbations, an attacker can
carefully craft deceptive adversarial samples to compromise
the integrity of the system. At the time of this writing, only a
limited number of studies have investigated the robustness of
DL-based RFF systems to such attacks, and only under ideal
conditions, without considering the requirements necessary for
executing successful attacks.

V. RESEARCH OPPORTUNITIES

Realistic Channel Simulation. One promising approach to
mitigate channel variability involves simulating RF fingerprint
data under various realistic wireless channel conditions, with

data taken from real data wireless channels [15]. Although this
research direction is still in its early stages, it holds significant
potential, as it exposes the signal to real-world deployment
conditions and introduces variability and augmentation to the
data before training.

Continual Learning. Another effective strategy might
involve integrating continuous adaptive learning into their
deployment. By adopting this approach, these systems can
continuously update in real-time without being re-trained,
allowing them to maintain accuracy and adapt to the highly
dynamic nature of wireless channels while being deployed.

Collaborative Learning and Multimodal Approach. To
improve the reliability and accuracy of DL-based RFF sys-
tems, researchers can investigate the concept of multimodal
and collaborative learning where different types of input data
or model predictions are fused together to strengthen the
overall system’s performance.

RFF Anonymization. Once the RF device fingerprint is
leaked, it can be used against the targeted device. Specifically,
malicious entities can exploit it for activities such as device
tracking, profiling, and spoofing. Consequently, developing
privacy-preserving RFF techniques is crucial to protect indi-
vidual privacy and data while ensuring the usability of these
DL-based RFF systems.

VI. CONCLUSION

Research on reliable and robust DL-based RFF systems has
progressed significantly in recent years, yielding effective solu-
tions for various scenarios and applications. However, deploy-
ing RFF systems in real-world settings still faces numerous
challenges inherent to DL techniques and the highly dynamic
nature of wireless scenarios. This paper has systematically
identified and analyzed the most significant considerations
and challenges towards deploying real-world DL-based RFF
systems, categorized per phase in the development pipeline.
We also outlined promising future research opportunities.
The aim is to provide researchers and industry experts with
succinct guidance on the main challenges and assist efforts
toward real-world RFF deployment.
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